
Lecture-19,20

Software Design

Dronacharya College of Engineering

Topics

• The Design Process

• Design Principles

• Design Concepts-Abstraction & Refinement

• Software Architecture

• Program Partitioning

• Coupling and Cohesion

Design Concepts

The design process for software systems often has two levels.

1. At the first level the focus is on deciding which modules are
needed for the system this is called the “System design” or “Top-
level design”.

2. In the second level, the internal design of the modules or how
the specifications of the modules can be satisfied is decided.
This design level is often called “detailed design” or “logical
design”.

Software Design

Software Design -- An iterative process
transforming requirements into a
“blueprint” for constructing the software.

Software Design Framework
Initial

Requirements

Gather data on User
Requirement

Analyze the Requirements
Data

Conceive of a High-Level
Design

Refine and Document the
design

Complete Design

Obtain answers to
Requirement Questions

Validate the Design against
Requirements

Relation of Analysis to Design
After analyzing and specifying all the requirements, the process of software design
begins.

As you all now ,the elements of analysis model are
 Data Dictionary
Entity Relationship Diagram
Data Flow Diagram
State Transition Diagram
Control Specification
Process Specification

Now the elements of Design Model are
Data Design
Architectural Design
Interface Design
Component-level Design

Relation of Analysis to Design

The Design Model
• Data Design

– Transforms information
domain model into data
structures required to
implement software

• Architectural Design
– Defines relationship among

the major structural
elements of a program

Procedural
Design

Interface Design

Architectural Design

Data Design

The Design Model

Which is mapped from the
Analysis model

The Design Model

• Interface Design
– Describes how the software

communicates with itself,
to systems that interact
with it and with humans.

• Procedural Design
– Transforms structural

elements of the
architecture into a
procedural description of
software construction

Procedural
Design

Interface Design

Architectural Design

Data Design

The Design Model

Which is mapped from the
Analysis model

The Design Process
• Mc Glaughlin’s suggestions for good design:

– Design must enable all requirements of the
analysis model and implicit needs of the
customer to be met

– Design must be readable and an
understandable guide for coders, testers and
maintainers

– The design should address the data, functional
and behavioral domains of implementation

Design Guidelines

A design should exhibit a hierarchical
organization
A design should be modular
A design should contain both data and

procedural abstractions
Modules should exhibit independent functional

characteristics
Interfaces should reduce complexity

Design Principles
• Design principles:

– The design process should consider various
approaches based on requirements

– The design should be traceable to the requirements
analysis model

– Design should be uniform and exhibit integrity
– Design should accommodate change
– Design should minimize coupling between modules
– Design and coding are not interchangeable

Design Principles
– Design should be structured to degrade gently

• It should terminate gracefully and not bomb
suddenly

– Design should have quality assessment during
creation, not afterwards
• This is to reduce development time

– Design should be reviewed to minimize on
conceptual errors -- Formal design reviews!

– There is a tendency to focus on the wrong things
• All conceptual elements have to be addressed

What is not Design
• Design is not programming.

• Design is not modeling. Modeling is part of the
architectural design.

• Design is not part of requirements.

• Where requirements finishes and where design starts
?.

• Requirements = What the system is supposed to do.

• Design = How the system is built.

Design Concepts
– The three basic design concepts are:

Problem Partitioning

Abstraction

Top-down and Bottom up design

Design Concepts-Abstraction
• Wasserman: “Abstraction permits one to concentrate on

a problem at some level of abstraction without regard to
low level details”

• Data Abstraction
– This is a named collection of data that describes a data object

• Procedural Abstraction
– Instructions are given in a named sequence
– Each instruction has a limited function

• Control Abstraction
– A program control mechanism without specifying internal

details, e.g., semaphore, rendezvous

Refinement

• Refinement is a process where one or
several instructions of the program are
decomposed into more detailed
instructions.

• Stepwise refinement is a top down strategy
– Basic architecture is developed iteratively
– Step wise hierarchy is developed

• Forces a designer to develop low level details as
the design progresses
– Design decisions at each stage

Modularity
• In this concept, software is divided into

separately named and addressable components
called modules

• Follows “divide and conquer” concept, a
complex problem is broken down into several
manageable pieces

• Let p1 and p2 be two program parts, and E the
effort to solve the problem. Then,

E(p1+p2) > E(p1)+E(p2), often >>
• A need to divide software into optimal sized

modules

Modularity
Objectives of modularity in a design method

• Modular Decomposability
– Provide a systematic mechanism to decompose a

problem into sub problems

• Modular Composability
– Enable reuse of existing components

• Modular Understandability
– Can the module be understood as a stand alone

unit? Then it is easier to understand and change.

Modularity
• Modular Continuity

– If small changes to the system requirements result
in changes to individual modules, rather than
system-wide changes, the impact of the side
effects is reduced (note implications in previous
example)

• Modular Protection
– If there is an error in the module, then those errors

are localized and not spread to other modules

Software Architecture
Desired properties of an architectural design
• Structural Properties

– This defines the components of a system and the
manner in which these interact with one
another.

• Extra Functional Properties
– This addresses how the design

architecture achieves requirements for
performance, reliability and security

• Families of Related Systems
– The ability to reuse architectural building blocks

Structural Diagrams

Kinds of Models

• Terminology
– Structural models

• Organized collection of components
– Framework models

• Abstract to repeatable architectural patterns
– Dynamic models

• Behavioral (dynamic) aspects of structure
– Process models

• Business or technical process to be built
– Functional models

• Functional hierarchy of the system

Program Structure Partitioning
• Horizontal Partitioning

– Easier to test
– Easier to maintain (questionable)
– Propagation of fewer side effects (questionable)
– Easier to add new features

F1 (Ex: Input) F2 (Process) F3(Output)

Program Structure Partitioning
• Vertical Partitioning

– Control and work modules are distributed top
down

– Top level modules perform control functions
– Lower modules perform computations

• Less susceptible to side effects
• Also very maintainable

Information Hiding

• Modules are characterized by design decisions
that are hidden from others

• Modules communicate only through well
defined interfaces

• Enforce access constraints to local entities and
those visible through interfaces

• Very important for accommodating change
and reducing coupling

type shuttle is private;
function get return shuttle;
function get_lat(s) return float;
function get_x(s) return float;
function get_long(s) return float;
…
procedure display(s:shuttle);
…
private
type shuttle is record

x,y,z: float;
roll, pitch,yaw: float;

end record;

Module A specification

s: A.shuttle;
x_coord: float;
…
s := A.get;
A.display(s);
…
x_coord := A.get_x(s);
...

Module B body

Functional Independence

• Critical in dividing system into independently
implementable parts

• Measured by two qualitative criteria
– Cohesion

• Relative functional strength of a module

– Coupling
• Relative interdependence among modules

Modular Design -- Cohesion

• A cohesive module performs a single task

• Different levels of cohesion
– Coincidental, logical, temporal, procedural,

communications, sequential, functional

Modular Design -- Cohesion

• Coincidental Cohesion
– Occurs when modules are grouped together

for no reason at all

• Logical Cohesion
– Modules have a logical cohesion, but no actual

connection in data and control

• Temporal Cohesion
– Modules are bound together because they

must be used at approximately the same time

Modular Design -- Cohesion
• Communication Cohesion

– Modules grouped together because they
access the same Input/Output devices

• Sequential Cohesion
– Elements in a module are linked together by

the necessity to be activated in a particular
order

• Functional Cohesion
– All elements of a module relate to the

performance of a single function

Modular Design -- Coupling
• Coupling describes the interconnection

among modules
• Data coupling

– Occurs when one module passes local data
values to another as parameters

• Stamp coupling
– Occurs when part of a data structure is passed to

another module as a parameter

Modular Design -- Coupling

• Control Coupling
– Occurs when control parameters are passed

between modules
• Common Coupling

– Occurs when multiple modules access common
data areas such as Fortran Common or C
extern

• Content Coupling
– Occurs when a module data in another module

• Subclass Coupling
– The coupling that a class has with its parent

class

Examples of Coupling

Design Heuristics

• Evaluate 1st iteration to reduce coupling &
improve cohesion

• Minimize structures with high fan-out; strive
for depth

• Keep scope of effect of a module within scope
of control of that module

• Evaluate interfaces to reduce complexity and
improve consistency

Design Heuristics

• Define modules with predictable function &
avoid being overly restrictive
– Avoid static memory between calls where

possible

• Strive for controlled entry -- no jumps into
the middle of things

• Package software based on design constraints
and portability requirements

Program Structure

Documentation

Summary

• Design is the core of software engineering

• Design concepts provide the basic criteria
for design quality

• Modularity, abstraction and refinement
enable design simplification

• A design document is an essential part of
the process

